
CONSTRAINING THE CHOICE
SET: LESSONS FROM THE
SOFTWARE REVOLUTION

DAVID LEVY*

George Mason University

For Law, in its true Notion, is not so much the Limitation as the direc-
tion of a free and intelligent Agent to his proper Interest, and
prescribes no farther than is for the general Good of those under that
Law. Could they be happier without it, the Law, as an useless thing
would of it self vanish; and that ill deserves the Name of Confinement
which hedges us in only from Bogs and Precipices.

-John Locke, Second Treatise of Government

T HE EXISTENCE OF MANMADE CONSTRAINTS On the choice set in
social processes is too well known to belabor. Constitutions con-

strain the will of majorities; rights hamper the ability of even super-
majorities to effect transactions; common morality attempts to limit
our consumption decision. One frequent judgment about some of
these constraints is that they are inefficient.' One interpretation of a
state of affairs where our theory tells us an activity is inefficient, but
the activity persists in spite of our valiant efforts at education, is that
we really do not understand the activity. The problem of interpreting a
divergence between what our theory entails and what we observe "out
there" is a general one in studies of ~ o c i e t y . ~

I shall explore the possibility that these constraints actually con-
tribute to efficiency by examining a related self-imposed constraint:
the "voluntary straight jacketm3accepted by those computer program-
mers participating in the "software revolution" or "structured pro-
gramming." Using the phrase in which the case that moral constraints
contribute to efficiency was originally made, the thesis to be defended
below is that such constraints are employed to compensate for a
"weakness" in human nature. The confines imposed in the software
revolution are particularly interesting, because the normative issues

Reason Papers No. 10 (Spring 1985) 77-88.
Copyright O 1985 by the Reason Foundation.

78 REASON PAPERS NO. 10

are of an unusually simple sort: what is the lowest-cost method to at-
tain the goal of creation of a correct program? This is a vital
simplification to the argument; we need only deal with efficiency
i s s ~ e s . ~

One excellent reason for thinking that social institutions constrain-
ing choice exist ultimately for efficiency reasons is that David Hume
said so. With Hume's argument, we can explain why sometimes we ac-
cept moral constraints by employing the same reasoning used to ex-
plain why sometimes we wear shoes: in a wide range of circumstances
such artifacts reduce the costs of human activity. As Hume expressed
the thesis, such institutions/artifacts exist to circumvent various
human failings. We wear shoes because our skin is tender; we adopt
laws to help us consider the full consequences of our actions at the
moments that we perform them.5

When we operate within the Wumean worldview, we accept the
thesis that human nature has persistent characteristics that make it dif-
ficult for individual members of society to work together toward
sometimes common, sometimes conflicting goals. In particular, one
characteristic of ours is that as members of a species we have little con-
cern for others as well as a rather small concern for our future self.

First, let us be clear that my interests are entirely positive. I am
uninterested in prescribing behavior; rather, I consider the prescrip-
tions that are in fact made. What devices are adopted to compensate
for the social damage brought about by unconstrained individual
choices? It can be shown that "moral iinformation" which restricts the
part of space individuals consider in their production decisions can
enhance prod~ct ivi ty .~ The guidance provided by moral constraints,
which would serve no purpose if offered to fully informed individuals,
can serve considerable purpose if offered to ignorant ones.

There seem to be two difficulties many have had with Hume's
theory of social evolution. The first problem is the slow process by
which such institutions as property rights, language, and the like
evolve. Even if his thesis is true, what would the relevance be of a pro-
cess which takes millenia to work itself to equilibrium for those whose
life span is measured in a few decades? Second, isn't the evolutionary
thesis vacuous; that is, doesn't "what survives is efficient" depend
upon the artful definition of "efficiency" as "survival"? To deal with
the first objection, we can show that while it is true that property
rights and language change only incrementally over the life of an in-
dividual, structured programming is a creature of the last two genera-
tions of computers. Even "old-fashioned," unstructured FORTRAN
dates from only 1957. To come to grips with the second objection, we
can show that efficiency can be given a simple enough characterization
so that we can generate implications about what sort of institutions
can be expected to survive.

In particular, what I shall demonstrate is that the software revolu-
tion has created imperatives requiring its adherents to renounce cer-
tain types of programming constructs, constructs that make it easier
to trade future difficulties for present solutions. As Hume suggested,

SOFTWARE REVOLUTION

positive time preference gets us into a good many difficulties. The
software revolution is an evolution of institutions to get out of these
tangles.

THE DOCTRINE O F T H E REVOL,UTION

Documentation of the claim that the structured programming
revolution emphasizes the role of constraints upon behavior is com-
pletely trivial. Here is what the great theoretician E. W. Dijkstra
wrote on the subject. The emphasis on constraint is clearly detailed:

I now suggest that we confine ourselves to the design and implementa-
tion of intellectually manageable programs. If someone fears that this
restriction is so severe that we cannot live with it, I can reassure him: the
class of intellectually manageable programs is still sufficiently rich to
contain many very realistic programs for any problems capable of
algorithmic solution. . . .

Argument one is that, as the programmer only needs to consider in-
tellectually manageable programs, the alternatives he is choosing from
are much, much easier to cope with.

Argument two is that, as soon as we have decided to restrict ourselves
to the subset of the intellectually manageable programs, we have
achieved, once and for all, a drastic reduction of the solurion space to be
considered. And this argument is distinct from argument one.'

Earlier, Dijkstra had warned against one particular programming con-
struct, the jump from one location t o another, basing his concern on
human frailty:

Our intellectual powers are rather geared to master static relations
and. . .our powers to visualize processes evolving in time are relatively
poorly developed. For that reason we should do (as wise programmers
aware of our limitations) our utmost to shorten the conceptual gap be-
tween the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and the
process (spread out in time) as trivial as possible.'

The Humean thesis that moral information contributes to efficiency
requires, naturally enough, that we say what efficiency is. The usual
definition, the minimum cost required to perform a specific task, is
perfectly adequate for our purpose. Needless to say, a programming
language will be used to serve many purposes and there are many
resources whose cost must be considered. There is the machine time to
create and run the program, the human time required to create and
run the program, and so on. Machine time costs are not limited to
electricity requirements; when one of my simulation experiments takes
five machine hours to run, those five hours cannot be used for
anything else. Other cost considerations stem from the fact that

80 REASON PAPERS NO. 10

mistakes a r e m a d e i n p rograms a s well as t h e fact that some programs
are designed to serve many purposes over decades. In either event a
program will be modified, either corrected or extended, in its service
life.

What will come as a surprise to economists is that the simple point
made in the previous paragraph is news. Indeed, many computer
scientists measured the efficiency of a program or a language im-
plementation by the single dimension of machine time. How long does
it take for the machine to run a given algorithm? For an economist it is
obvious that the number of operations required for the computer to
perform the algorithm is an egregiously simple-minded criterion of ef-
ficiency. Computer time is simply one input in a multidimensional
minimization problem. Nonetheless, as recently as 1974, a mathemati-
cian of the stature of Donald Knuth found it necessary to point out to
his peers the role of marginal considerations in efficiency calculations:

There is no doubt that the "grail" of efficiency leads to abuse. Pro-
grammers waste enormous amounts of time thinking about, or worrying
about, the speed of noncritical parts of their programs, and these at-
tempts at efficiency actually have a strong negative impact when debug-
ging and maintenance are considered. We should forget about small ef-
ficiencies, say about 97% of the time: premature optimization is the
root of all evil.I0

Knuth's "profiler," a programmer that can detect bottlenecks in pro-
grams, has had a considerable impact in thinking about language
design precisely because it allows programmers to determine what
parts of the code are worth further expenditure of their resources."

The obvious implication of all this is that for certain problems one
mix of factors will be optimal and for other problems quite a different
mix of factors will be the lowest-cost method of production. Programs
designed for decade-long use will put a far greater stress on the con-
sideration of maintenance than programs designed to last a weekend.

One important trade-off that confronts a language designer is the
range of tasks which the language allows. By simply eliminating the
possibility of performing certain activities on the machine, the dif-
ficulty with which other tasks can be performed can be decreased con-
siderably. By the definition of efficiency then a language which cannot
perform a task will not be an efficient tool for this task. Historically,
languages exist with varying degrees of restriction: some languages
place no restrictions whatever on use of the machine while others put
very stiff restrictions indeed.

It is useful to distinguish two methods by which a computer can be
controlled. The first is by means of a language which allows the pro-

SOFTWARE REVOLUTION

grammer to coerce directly the physical machinery. TO this end the
language requires that the programmer specify what part of the
machine is to be used for each and every operation. The most widely
employed language of this type is an assembly language where there is
a one-to-one correspondence between the language used by the
machine itself and the language used by the programmer to issue com-
mands. Obviously, assembly language places no constraints in the way
of using the machine.Iz The second type is a language, called a high-
level language, which to a greater or lesser degree conceals the hard-
ware details from the programmer. The programmer says what is to be
done, abstractly from the hardware details of how it is done. Because
the machine must be addressed in its own tongue for the message to
register, a high-level language must be translated (compiled, inter-
preted) to a lower-level language suitable for machine operation.

Machine language generated mechanically from a high-level
language will generally require more computer resources (space, time)
than a program originally composed in assembly language.
Mechanical translation from a high-level language A to the lower level
language B will, other things being equal, not result in as "tight" a
piece of code as would composition in B because the translation is
basically a line-by-line affair. Originally composing in assembly
language can take advantage of hardware specifics.')

The fundamental discipline that structured programming seeks to
impose upon choices is to prevent the writing of programs which are
difficult to read and thus to fix or extend. There are actually good
reasons such programs are written: it is easier to write poorly than it is
to write lucidly. This is as true in a programming language as it is in
English. As far as we know, machines do not care about style, but a
poorly written program often conceals a poorly thought-through
algorithm. Moreover, even a correct program which is difficult to read
is often enormously difficult to modify to serve other purposes. Here,
we encounter the same facet of human nature upon which Hume
founds government and property: without some restraint on our self-
interest we simply do not care enough for others or our future selves to
act out of social concern. For the issue at hand, we simply cannot be
trusted to write lucid programs without some sort of restriction on our
interested actions. Since for many programming projects the costs of
software maintenance (extension and correction of existing programs)
dwarf the costs of program construction, it is to the interest of society
for this barrier to the "quick and dirty" to arise.I4

The first stage of the revolution was the creation of high-level pro-
gramming languages for program composition. At the time of the
early high-level languages (FORTRAN, and its spinoffs such as BASIC in
its early years, as well as APL), computer scientists did not fully ap-
preciate the importance of readability.I5 Consequently, many pro-
gramming constructs were allowed, if not encouraged, which mask the
intent of the programmer.

I have talked in generalities about language constraints. Let us con-

REASON PAPERS NO. 10

sider a specific problem in numerical calculation formulated in three
distinct high-level languages. The only background information re-
quired for the argument is the unfortunate fact that a computer can-
not do exact mathematics. A "real" number in mathematics must be
represented with an infinite number of digits to the right of the
decimal place. Computers, located in time and space, are only capable
of representing a finite number of digits. For some purposes, an ap-
proximate answer is fine; for others, an exact answer is an absolute
necessity. This means if the answer is not exact, we prefer not to have
any answer. Consequently, many programming languages allow the
user to specify two types of computations: integer (exact-precision)
arithmetic for a very limited range of numbers and real (limited-
precision) arithmetic over a very much wider range of numbers.

What is an example of such a severe approach to computational
rigor? In many general-purpose languages the index of an array is an
important operation that can only be performed with a number
declared to be exact-precision.I6 When we want the kth variable in a
series, we will not settle for approximately the kth since "approx-
imately the kth" may denote the "k-1st" or the "k+ Ist"." Unfor-
tunately, there is a problem of getting the two sorts of computations
confused. There are three obvious ways of dealing with the problem:
a) Don't allow more than one type of arithmetic; b) Make it impos-
sible to confuse the two; c) Trust the programmer to know what he is
doing.

Suppose that one wanted to use a computer to divide 1 by 2 and
print the result. A long-winded version of a BASIC program to perform
this otherwise intractable mathematical feat is presented below as are
terse FORTRAN and Pascal programs to do the same.

BASIC FORTRAN Pascal

1Oi = 1 i = l program main(output);
2 0 j = 2 j = 2 var i,j,c: real;
30 c = i/j c = i/j begin
40 print c write(5,l),c i:= 1;
50 end 1 format(lx,f9.2) j: =2;

end c: = i/j;
writeln(c)

end.

In the Pascal program one must first say what type of entity will be
later considered. Here we specify that the variables divided are the
computer realization of the (limited-precision) real numbers. The
result, subject to computer precision, is 0.5. Presumably, the FOR-
TRAN program is designed to perform the same computation.
However, by naming the variables i and j , we have implicitly asked for
integer (exact-precision) numbers. When an integer is divided by
another integer, FORTRAN computes a number which is truncated
towards zero. The result that will be printed out is therefore 0.00. This

SOFTWARE REVOLUTION

confusion of real arithmetic and integer arithmetic has been the bane
of many a FORTRAN program.I8 BASIC will correctly compute 0.5.

The FORTRAN program is harder to read than the Pascal program,
even though it is shorter, because the programmer's intention is not
made clear in the written commands. It is hard to know that the pro-
grammer did not want integer division whereas in the Pascal version
this is abundantly clear.19

The route taken in Pascal requires that the programmer explicitly
specify what variables are of what type, integer or real. Indeed, Pascal
has a special symbol for integer division; FORTRAN uses the same sym-
bol for both types of division. The route taken in BASIC is to abandon
integer arithmetic.=O Pascal programs are thus harder to write while
BASIC programs cannot handle a range of problems with which either
FORTRAN or Pascal programs can deal routinely.

Ultimately, the solution of ending confusion by giving up computa-
tion ability will not be satisfactory. A language cannot be efficient
with respect to a problem if it cannot solve it. Thus, the great excite-
ment generated by languages such as Ada and Modula-2 arises from
their promise to deliver the same computing capability as assembly-
language programming with the safety of Pascal.

LANGUAGES AS CONSTITUTIONAL
RESTRICTIONS ON CHOICE SPACE

A familiar statement in constitutional theory is that an ideal con-
stitution should. be designed to serve a race of devils; angels are quite
capable of taking care of themselves without laws of any sort. Just as
disputes in political theory often center on the model of man assumed
as background, so too controversies among proponents of different
programming languages ask: what are the characteristics of the person
for whom this language is designed? Here is a statement from pro-
ponents of one of the more liberal of the modern languages, C:

Rather than try to deal with all of reality in every line of code, pro-
gramming languages, explicitly or implicitly, construct models of reality
and present them to the programmer.''

Questions of how much to trust programmers to do the right thing and
how much to make it difficult to do the wrong thing are fundamental
to the question of language design:

Another model implicit in a language environment is that of the pro-
grammer. Much of the C model relies on the programmer always being
right, so the task of the language is to make it easy to say what is
necessary. C encourages telling the truth about strange construc-
tions. . . .The converse model, which is the basis of Pascal and Ada, is
that the programmer is often wrong, so the language should make it
hard to say anything incorrect. In Pascal (and presumably Ada) it is
harder to say strange things and therefore perhaps harder to make
mistakes.*'

84 REASON PAPERS NO. 10

A programming language provides vocabulary a n d a g r a m m a r in
which it is possible to decide whether any particular collection of sym-
bols is well-formed (meaningful) within that language. Distinct
languages differ on the basis of what is a well-formed expression, but
the fact that languages might use different symbols for the same
mathematical operation is only a triviality. If one symbolic pattern
performs the same syntactical function as another, a mechanical
translation can turn one language into another.23 One issue is what the
language allows the program to do with the machine resources. The
language provides a framework inside which instructions can be
issued. Certain instructions are constitutional (of course they may be
stupid), but others are not; that is, they are not well-formed expres-
sions within the language.

The consensus among computer scientists is that the safety of a
language is almost exclusively determined by its readability. There is
no mechanical method of proving most programs correct, so clarity of
expression is a watchword:

In fact, program clarity is enormously important, and to demonstrate
(prove?) a program's correctness is ultimately a matter of convincing a
person that the program is trustworthy. How can we approach this
goal? After all, complicated tasks usually d o inherently require complex
algorithms, and this implies a myriad of details. And the details are the
jungle in which the devil hides.14

Besides a mathematical inclination, an exceptional good mastery of
one's native tongue is the most vital asset of a competent p r~grarnmer . '~

The most damning slur exchanged in the polemics among adherents
of varied programming languages is the "write-only7' epithet. A write-
only language, allowing a great deal of computation to be accom-
plished in a relatively few symbols, by its very terseness hides the in-
tent of the programmer, both from others who read the program and
possibly even from the creator when he later reads the program to
modify it. The highest praise possible for a computer language these
days is that it is readable.

Ada enforces a strict programming discipline with the intention of mak-
ing programs more readable,. . . 2 6

But bare Fortran is a poor language indeed for programming or for
describing programs. So we have written all of our programs in a simple
extension of Fortran called "Ratfor". . . .It is easy to read, write, and
understand. 2 7

The lack of correspondence between textual and computational. . .
structure (resulting from GOT0 statements] is extremely detrimental to
the clarity of the program and makes the task of verification much more
difficult. The presence of goto's [sic] in a Pascal program is often an in-
dication that the programmer has not yet learned "to think" in Pascal
(as this is a necessary construct in other programming language^).^^

It's bad practice to bury "magic numbers" [numerical constants]. . .
in a program; they convey little information to someone who might have
to read the program later, and they are hard to change in a systematic
way. Fortunately, C provides a way to avoid such magic numbers.z9

SOFTWARE REVOLUTION

There are not all that many computer scientists who seem willing to
defend poorly written programs, so the emphasis on program clarity is
not at all con t rove r~ i a l .~~ Computer science turns nasty when a further
characterization of a desirable language is offered: the language must
be "manageable." One characteristic of "manageable" is that the
language is small, in some objective sense." "Small" of course means
there are few operations which are built into the language. One subjec-
tive characteristic of manageability is that an individual can hold the
whole of the language's rules in his head when he writes a program.
Thus, it almost follows from this artful definition that manageable
languages have a single creator. The importance of such one-man
languages can hardly be overestimated because they include APL, LISP,
C, Pascal, Modula-2, among others.32 Needless to say, some
languages are the products of committees, examples include ALGOL
68, PL/I, and Ada. These are, in fact, very large, very complicated
languages which are very difficult to understand as wholes. Hence the
controversy: if you do not fully understand the language you are
using, how can you be certain the program you are writing is
correct?33 Even if the program is correct, in terms of the official syn-
tax of the language, because a big language may be very difficult to
implement, what reason is there t o believe the complier will be cor-
rect?

The implication of the above is simple: there will be no tendency for
a unique programming language to emerge. One language that can do
everything will be too big and too complicated for any one individual
to remember. Thus, we obtain Adam Smith's theorem about gains
from specialization with regard t o programming languages. One
language will process numbers; another will process letters and an in-
dividual who needs to do both will use a separate programming tool
for each task.

A full-dress social institution, complete with manuals of decorum
and inspiration, now exists.34 The software revolution provides
evidence that social evolution can move remarkably rapidly when
there are strong enough incentives to do so. The economic cost of soft-
ware failure is too obvious to belabor.

Languages that enforce discipline are triumphing over languages
that allow the programmer "to do his own thing."35 As Odysseus's
ropes restrain him from the Siren, so too Programmer can escape the
charms of the quick-and-dirty with the constitutional fortifications
which have evolved in the last two decades. Human nature seems not
to have changed much since David Hume wrote. Institutions still arise
to curb our natural inclinations, to direct our self-interest so our ac-
tions more nearly serve the common good.

86 REASON PAPERS NO. 10

*Thanks are due to Peter Watts for comments on an earlier version. I have also
benefited from the acute comments of Reason Papers' referees. The research was sup-
ported by the Center for Study of Public Choice and DARPA contract MDA 903-84-K-0331.
The errors and obscurities are my responsibility alone.
1. For a recent discussion of A. K. Sen's thesis that rights and efficiency are in colii-
sion, see Utilitarianism and Beyond, ed. Amartya Sen and Bernard Williams (Cam-
bridge: Cambridge University Press, 1982).
2. Examples are provided in David Levy, "Rational Choice and Morality," History of
Political Economy 14 (1982): 1-36 and "Towards a NeoAristotelian Theory of
Politics," Public Choice 42 (1984): 39-54.
3. The phrase is attributed to Marvin Minsky to describe Pascal, what is generally
agreed to be the breakthrough language of the revolution. Jerry Pournelle, "The
Debate Goes O n . . . ," Byte 8 (August 1983): 315. Other languages, especially some
unofficial versions of Algol, embodied the same design philosophy, but Pascal has
become a de facto academic standard.
4. The simplification is this: perhaps some critical constraints exist because people (or
whales or trees) have rights. I believe that rights can be reduced to efficiency considera-
tions, but there is no reason to consider the possibility that structured programming ex-
ists because machines have rights. The argument that rights encapsulate efficiency con-
siderations is sketched in my review of Utilitarianism and Beyond, e d ~ . A. K. Sen and
Bernard Williams, in History of Political Economy 16 (Winter 1984).
5. David Hume, A Treatise of Human Nature (Oxford: Oxford University Press,
1888), p. 480: " 'tis certain, that self-love, when it acts at its liberty, instead of engaging
us to honest actions, is the source of all injustice and violence; nor can a man ever cor-
rect those vices, without correcting and restraining the natural movements of that ap-
petite." Ibid., p. 537:."Here then is the origin of civil government and society. Men are
not able radically to cure, either in themselves or others, that narrowness of soul, which
makes them prefer the present to the remote. They cannot change their natures. All they
can d o is to change their situation, and render the observance of justice the immediate
interest of some particular persons, and its violation their more remote." This is the
central insight upon which the argument below is based: human institutions of all sort
arise to reduce the costs of attaining goals desired by many members of society.

The point is made in the modern economics literature by R. H . Strotz, "Myopia
and Inconsistency in Dynamic Utility Maximizing," Review of Economic Studies 23
(1956): 165-80.
6. The demonstration that moral information can function as an element of a
metaproduction function is provided in David Levy, "Utility-Enhancing Consumption
Constraints," presented at the Southern Economic Association, November 1984; and
David Levy, "David Hume's Invisible Hand in the Wealth of Nations," Hume Studies
(1985), forthcoming. The former deals with convex production surfaces, the latter con-
siders nonconvexity. Gilbert Harman has asked: how d o these constraints differ from
any other constraint? As I see it, there are two distinguishing characteristics of moral
constraints: 1) they are "soft"; that is, they can be violated; nonetheless, 2) if violated,
the individual who does so feels guilty. These conditions are of course not independent:
if moral constraints were "hard," guilt would be redundant.
7. Edsger W. Dijkstra, "The Humble Programmer," in Classics in Software Engineer-
ing, ed. Edward Nash Yourdon (New York: Yourdon Press, 1979), p. 121.
8. Edsger W. Dijkstra, "Go T o Statements Considered Harmful," in Classics in Soft-
ware Engineering, pp. 29-30. The fame of this particular letter is hard to overstate; e.g.,
the Pascal compiler for the IBM Personal Computer has an option which "causes each
G O T 0 statement in the listing to be flagged with a 'considered harmful' warning."
Pascal Compiler, IBM Personal Computer Language Series, 1981, p. 4-14. Of course,
this is a sly joke, but a joke among friends.
9. Dijkstra, "The Humble Programmer," p. 116: "To put it quite bluntly: as long as
there were no machines, programming was no problem at all; when we had a few weak
computers, programming became a mild problem, and now we have gigantic com-
puters, programming has become an equally gigantic problem."
10. Donald Knuth, "Structured Programming with go to Statements," in Classics in
Software Engineering, p. 269.
11. E.g., Brian W. Kernighan and P . J . Plauger, Software Tools (Reading, Mass.:
Addison-Wesley, 1976), pp. 315-16.

SOFTWARE REVOLUTION 87

12. A textbook example of such (MIXAL) is found in Donald E. Knuth, Fundamental
Algorithms, 2d ed., vol. 1 of Knuth, The Art of Computer Programming (Reading,
Mass.: Addison-Wesley), pp. 141-60. Knuth, "Structured Programming with go to
Statements," in Classics in Software Engineering, p. 275: "Programs in MIXAL are like
programs in machine language, devoid of structure; or, more precisely, it is difficult for
our eyes to perceive the program structure. . . . I t is clearly better to write programs in a
language that reveals the control structure, even if we are intimately conscious of the
hardware at each step."
13. For examples of how translation from a high-level language to assembly-language
produces swollen code, see Christopher L. Morgan and Mitchell Waite, 8086/8088
16-Bit Microprocessor Primer (Peterborough, N.H.: Byte/McGraw-Hill, 1982), pp.
70-72.
14. Daniel McCracken, "Revolution in Programming: An Overview," in Classics in
Software Engineering, p. 176: "Large projects in the past have had reported coding
rates in the range of two or three statements per man-day. Since it would be difficult to
spend more than ten minutes writing three statements, it's clear that a lot of time was
being wasted, presumably debugging and recoding modules that didn't interface prop-
erly with other modules.. . .The discipline imposed by using only the three basic pro-
gram structures.. .improves the performance of even the best programmers. Perhaps
more important, it can greatly enhance the effectiveness of the rest of us, who are not
geniuses and who sometimes program in rather sloppy ways if left to our own devices."
See also, Yourdon, "Introduction," Classics in Software Engineering, p. 100, "quick-
and-dirty patches done in the middle of the night have a way of becoming permanent,
much to the dismay of the next generation of maintenance programmers."
15. The relatively new BASIC which is provided on microcomputers is a far different
language than the very early version which still can be found on mainframe computers.
There are very modern versions of BASIC available today which bear a close resemblance
to other structured languages.
16. Some special purpose languages, e.g., Edison, only allow exact precision numbers.
Per Brinch Hansen, Programming a Personal Computer (Englewood Cliffs, N.J.:
Prentice-Hall, 1982).
17. FORTRAN 77 is an example of a very important language which allows approximate
precision numbers to serve as indices to arrays. This is one of the major changes which
was made in FORTRAN vis-a-vis the 1966 standard of the language.
18. In his Alan Turing Lecture, C. A. R. Hoare defends languages such as Pascal
which require the programmer to specify which type of number is to be employed for
each operation, citing the fact that a Mariner space probe was lost because of the confu-
sion of integer and real arithmetic in a FORTRAN program. See "The Emperor's Old
Clothes," in Writings of the Revolution, ed. Edward Yourdon (New York: Yourdon
Press, 1982), p. 190.

Peter Watts points out that because this is such a very well-known problem with
FORTRAN, some compliers catch such abuses. However, the FORTRAN 10 complier on
Brookings' DEC 10 and the FORTRAN 5 on George Mason's CDC 720 gave the answer
reported in the text with nary a word of warning.
19. The programmer's intent can be inferred from the "format" statement where a
real-valued number is requested. Unfortunately, many FORTRAN programs, as a matter
of style, separate format statements from "executable" statements.
20. Again, this is old-fashioned BASIC. Newer BASICS d o allow exact-precision
arithmetic.
21. Stephen C. Johnson and Brian W. Kernighan, "The C Language and Models for
Systems Programming," Byte 8 (August 1983): 48.
22. Ibid., p. 60.
23. This is precisely what "preprocessors" do. Why bother? One programming con-
struct may be far more readable than another even when they are mathematically
equivalent. Preprocessors are especially popular with FORTRAN 66 programmers: they
allow the creation of relatively readable programs while maintaining FORTRAN 66's vir-
tues (it is a small, widely available language).
24. Niklaus Wirth, Programming in Modula-2,2d ed., corrected (New York: Springer-
Verlag, 1983), p. 86.
25. Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective (New
York: Springer-Verlag, 1982), p. 130.

88 REASON PAPERS NO. 10

26. Narain Gehani, Ada: An Advanced Introduction (Englewood Cliffs, N.J.:
Prentice-Hall, 1983), p. xiii. J. G. P . Barnes, Programming in Ada (London: Addison-
Wesley, 1982), p. 7: "Some of the key issues in Ada are [I] Readability-it is recognised
that professional programs are read much more often than they are written. It is impor-
tant therefore to avoid an over terse notation such as APL which although allowing a
program to be written down quickly, makes it almost impossible to be read except
perhaps by the original author soon after it was written."
27. Kernighan and Plauger, Software Tools, p. 4. M y impression is that Ratfor is the
most popular of all the FORTRAN preprocessors mentioned in note 23.
28. Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, 2d ed. (New
York: Springer-Verlag, 1975) pp. 32-33.
29. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, N.J.: Prentice-Hall, 1978), p. 12.
30. One should acknowledge the programming equivalent of the "Real men don't. . ."
jokes, i.e., "Real programmers don't document their code: if it was hard to write, it
should be hard to read."
31. Hansen, Programming a Personal Computer, p. 4: "To determine whether or not a
programming language is small, you need only look at the language report and the com-
piler. "
32. The creators of the first three are Kenneth Iverson, John McCarthy, and Dennis
Ritchie. Both Pascal and Modula-2 were created by Niklaus Wirth. The UNIX operating
system is also a one-man affair.
33. The polemics of Dijkstra against PL/I and Hoate against Ada are especially worthy
of note.
34. E.g., B. W. Kernighan and P. J. Plauger, The Elements of Programming Style
(New York: John Wiley, 1974); E. W. Dijkstra, A Discipline of Programming
(Englewood Cliffs, N.J.: Prentice-Hall, 1976).
35. Pournelle, "The Debate Goes On," p. 324: "Pascal has been the real success story
in microcomputing. Last year more books [counting titles] were published about Pascal
than about BASIC."

